
You’re hashing it wrong 
 
The “Collection 1” data breach, containing around 773 million unique emails and passwords, 
dropped at the beginning of this year and more has been promised to come. In light of this, I 
want to talk about the weaknesses in current password-handling best practices on both the 
user and business end. More specifically I want to complain about the common and 
extremely out-of-date delusion that salted hashes are somehow safe that pervades the 
computing community. 
 
The aforementioned databreach, like most, contained passwords stored in a mixture of 
plaintext, hashes and salted hashes. 
Its not even worth explaining why storing passwords in plaintext is a catastrophe, but the 
other two storage types have their own, lesser-known, problems too. The three main 
weaknesses of password storage today I think are: 

1. The wrong hashing algorithms are being used 
2. Developers are lulled into complacency by salting 
3. Common password advice given to users is useless 

 
Now, one obvious statement is that old hashing algorithms should never be used for 
cryptography. SHA-1 and MD5 are both hopelessly outdated, and MD5 has been 
fundamentally broken after a paper published in 2004. And yet, unbelievably, in 2013 Adobe 
had an enormous databreach and were found to be still using unsalted MD5 hashing for their 
password storage, proving yet again that you literally cannot set the bar low enough for the 
public. Either the public needs to start pushing back stronger against this kind of negligence, 
or there needs to be regulatory punishments introduced by governments to fine companies for 
being so irresponsible with customer data. 
 
But even modern algorithms like SHA-512, commonly used in Linux distros, are no longer 
up to task for large datasets simply because they are just too fast, especially with 
fast-improving GPU technology spurred on by last years’ bitcoin boom. The issue of hashes 
being too fast is compounded because people use the same algorithms for different things! 
When you are checking the integrity of datafiles, you want a fast hash which is antithetical to 
security. Developers desperately need to start actually using purpose-built modern day 
cryptographic hashes, instead of just slapping a salt into SHA-512 and calling it a day. 
Modular hashes which can vary hash speeds based on the specific use case exist and would 
be absolutely ideal, for example PBKDF2 or bcrypt2. 
 
The passwords in this databreach would almost invariably be cracked with a password 
dictionary, which basically takes in the hundreds of millions of previously leaked passwords 
and ranks them by popularity. More sophisticated attackers will then also run “modification” 
options, i.e instead of searching only for direct matches they will also try simple permutations 
such as replacing “O” with “0” or “i” with 1. In this way, an attacker can extremely easily 
crack the top, say, 80% weakest passwords in a breach, more than enough for their purposes, 
and never have to worry about actually cracking every last one. In this way, choosing a 
password is a lot like running away from a bear - you don’t have to outrun the bear, you just 
have to outrun the person next to you. And yet current password advice practically 
encourages identical passwords from users! Things like requiring a number or a capital letter 
are pointless, as the majority of users will just capitalise the first letter or put a “1” on the end 



of their password, defeating a prehistoric dictionary attack but folding instantly to a password 
dictionary. 
 
So as a user, what can you do? There are three takeaways from this article: 
 

1. Prioritize password length above all else - the amount of variance grows 
exponentially, thus the security of a 20 digit password is unfathomably greater than 
one of half its size. 15 characters should be the absolute minimum if you are using 
english words inside your password. 

2. Don’t even bother with “normal” substitutions, like l33tspeak. Instead insert your 
l33tspeak into the middle of words or substitute the wrong letters to throw off 
permutation seekers - for example, instead of “Z3RO” you could have “Z3ERO” or 
“Z5RO” as stronger alternatives. Adding a “1” or “123” to the end of your password 
is similarly useless, try inserting it into the middle of your password instead if you 
must. 

3. Change your passwords! If you use weak passwords for small and/or incompetent 
companies, they ​will​ be broken eventually and you may not even notice. Make sure 
your passwords for important services (email, banking, etc) are completely different 
from those you use for other accounts. 

 
Other than that, there is very little you can do except hope. 


